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Joint probability distributions for disordered ID wires 

P J Roberts 
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UK 

Received 1 June I992 

AbslracL The scattering of a onedimensional disordered wire consisting of elastic, 
time-rev-I-inwrianl scatterers, i s  specified eomplelely by the lransmission intensity 
T, reflection phase +, and transmissioD phase, 4,. The problem of extracting the 
joint distribution p1-'*(T, of these variables for a systen of large length Lz, 
given the distribution p l ( T ,  dr,+,)  of the individual scatterers i s  examined without 
recourse to the random-phase assumption and without restriction to weak disorder. The 
method adopted is lo expand the distribution in term of irreducible representations of 
SU(l,I), the group topologically formed by the k-space transfer matrices which describe 
the multiple scattering. Both the bulk of the distribution, and the resonance tail are 
examined. The method is applied to the case of the Anderson model over a range of 
disorders. 

I. Introduction 

It is well known that in the absence of inelastic effects, thc rcsulting coherent interfer- 
ence of the electronic wavefunction in a disordered system induces strong fluctuations. 
Quantities such as the conductance become sensitive to the precise impurity arrange- 
ment, and the probability distributions describing such quantities can become broader 
as the system-size is increased. For onedimensional and quasi one-dimcnsional dis- 
ordered wires consisting of elastic scatterers, it has been established [l-91 that the 
logarithm of the conductance is a well behaved statistical quantity, being described 
approximately by a Gaussian for long lengths, and that this variable should be used to 
characterize the ensemble as opp.osed to the non-self-averaging conductance. Partic- 
ular emphasis has been put on the waling properties of the distribution; specifically, 
the question arises as to whether single-parameter scaling is obeyed. It is by now well 
established [7, 81 that, for ID systems, the distribution is characterized by a single 
parameter only in the limit of weak disorder. 

Despite the log-normal form describing the bulk of the distribution of the con- 
ductance of long 1D wires, deviations occur in the tails, and statistical averages using 
this form must be taken with care. In particular, the moments (g" )  (U > 1/2) of the 
conductance are never given correctly by such an average [S, 10, 111; these moments 
are dominated by statistically rare resonance-states which give rise to exceptionally 
large conductances 

Theoretical studies of the conductance have been based on the Landauer formula 
[12] which relates the conductance to the transmission intensity T of the disordered 
system, thus placing particular interest on the scattering characteristics of the wire. 
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The case of random-phase models has been studied in particular detail by Mello [7l, 
who derives an analytic expression for both the mean and the variance of the distri- 
bution in terms of the distribution of the individual scattercm (assumed statistically 
independent but equivalent). For such ensembles, the distributions of the transmis- 
sion and reflection phases (which together with the transmission intensity completely 
characterize the scattering of a single-channel system consisting of time-reversal in- 
variant scatterers) are taken as flat over their range. This assumption induces great 
simplifications in the description of the evolution of the probability distribution with 
system-size, and extensions of analytic work to more physical models have concen- 
trated on the limit of weak disorder [SI. For non-random-phase models, there also 
arises the non-trivial question of the form attained by the transmission and reflection 
phase distributions in the limit of large system lengths [13-161. 

In this paper, the asymptotic joint probability distribution of the transmission 
intensity (T), reflection phase (&) and transmission phase (&) is derived for ensem- 
bles not restricted to being comprised of random-phase scatterers nor to the limit 
of weak disorder. The approach is based, as in [7], on the observation that the 
k-space transfer matrices (defined below), describing single-channel elastic scatterers 
obeying time-reversal symmetry, topologically form the group SU(1,l). The unitary 
irreducible representations of this group which form a complete set are known [17], 
and direct expansion of the joint probability distribution in terms of these represen- 
tations facilitates the calculation of its form for large system lengths. Both the bulk 
of the distribution and the resonance-tail can be extracted. The use of representation 
theory in the study of disordered systems was initiated by Kirkman and Pendry in the 
extraction of the long-length behaviour of the moments (Tu) (U > 1/2) Ill], and in 
the calculation of the localization length and density of states [18] (see also [I91 for 
such calculations). The asymptotic distribution of the reflection phase has also been 
studied by such means [15]. In referenccs Ill, 15, 18, 191, the representations are 
referred to as ’generalized transfer matrices’. 

The transfer matrix provides a simple means with which to describe multiple 
scattering; it relates the incident and reflected wave amplitudes at the left to those at 
the right of a scattering system. In terms of the reflection and transmission coefficients 
(r and t respectively) of the medium, it has the explicit form 

The transfer matrix (MI,,,) for a system composed of Lz scatterers can be con- 
structed from the the transfer matrices of the individual units by simple multiplication 

The fact that the transfer matrices of the scatterers are all members of the group 
SU(l,l), and that the right-hand side of (2) is just a product of such clcments, allows 
powerful grouptheoretical results to be applied in the calculation of the system-length 
dependence of quantities of interest. The next section discusses the application of 
such ideas to the extraction of the joint probability distribution. 
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2. Methodology 

Cast in terms of transfer matrices, it is required to obtain, given the distribution 
p,(M) of the individual scatterers, the probability distribution P ~ - ~ ~ ( M )  resulting 
from the successive 'convolutions' implied by (2) (the scatterers are assumed sta- 
tistically independent but equivalent). The approach taken here will be to directly 
expand the probability density pi-Ln( M) in terms of the irreducible representations 
of SU(l,l), the group formed by the (Ic-space) transfer matrices. A discussion of the 
propelties of these irreducible representations that will be required is presented in 
the appendix. 

With the notation of the appendix, the spectral analysis takes the form [7] 

P I - + L z ( ~ )  = Dkm,(M)((Dk))*La)mm,wk 
D* k=1,3/2, ... 

mm' 

where the following definition has been made 

( ( m L J m m ,  = ~ D k ~ l ( M ) ~ , - ~ ( M ) d p ( M ) .  (4) 

The probability density is here considered to be relative to the invariant measure 
dp(M), so that in particular the normalization condition is Jp,,L,(M) dp(M) = 1. 
Exploiting the statistical independence and equivalence of the individual scatterers, 
and utilizing the representation property 

(5)  

equation (4) can be re-expressed as 

where the average is taken over the probability distribution for a single scatterer. 
The procedure will be to extract the contributions in the expansion (3) which 

dominate for large system lengths. The case of the bulk of the distribution will be 
examined first. 

3. The bulk of the distribution 

It is convenient to determine the contributions of the various classes of representations 
separately. An examination of the contribution of the continuous class Ca will be 
performed first. 



7798 P J Roberrs 

3.1. Contribution of the class CO 
It is required to evaluate, for large L z ,  the set of integrals 

m, m' = 0 ,  fl, f 2 , .  . . . (7) 
The casc of random-phase models has been examined in detail by Mello [7]. For 
such ensembles, the averaged representation (D1/2t'") has zcro entries except for 
the element m = 0," = 0, so that the matrix exponentiation in (7) can be per- 
formed trivially. Only the integral I,$ is non-vanishing. Furthermore, the averaged 
representations in the classes C1l2, D* vanish identically, implying that the entire 
joint probability distribution is given simply by I&"( M, Lz). This integral can be 
performed [TI for large L z  by the saddle-point method. 

For noncircular ensembles, the averaged representations do not condense, imply- 
ing in particular that the matrix exponentiation is no longer straightforward. In the 
evaluation of (7), it will be found necessary to deform the contour of integration, so 
that it is required to obtain the analytic continuation of (D1/2fi")L, into the complex 
plane of s. Such a continuation has been accomplished by Kirkman and Pendry [ 1 1 ]  
for the set of representations k2(-1/z-is) which are related to the D1/2fid E CO by a 
simple unitary similarity transformation (equation (k10 ) ) .  It is shown in [ I l l  that the 
k2(-1/z-i') retain their re resentation status for arbitrary s ,  allowing the replacement 
( p ( - l / Z - i s )  ) L r  = (x *z(-lE-ia)lLz at any complex s and implying that 

Although the similarity transformation relation between D1/2ti3 and k2(-1/z-is) can 
also be extended to complex s, it is found to be more convenient to span the class 
C" with the 22(-1/z-i3) due to the absence of square-root factors. In terms of these 
representations, one has 

(8) 
( { ~ z ( - l / 2 - i s ) ) * L z )  , , = ( -2(-?/2-(s) . )La,  

COntlnUat lOn XCont,n"at,on 

Henceforth in this section, the parametrization p,T,u will be understood (where 
p and U are related to q5r and q5t by equation (kl)). 

In order to describe the bulk of the distribution for large Lr,  it is permissible 
to use the asymptotic forms (for T < 1) of the elements k,,,,,,, ( M ) .  For 
compactness in the display of explicit forms, it will be assumed that m 2 m' (the 
I-m-mJ for m < m' can then be constructed by use of the identity I Z k , ( M ,  L z )  = 
I F k - m , ( M ,  L z )  ). With this restriction, one has (over the region of complcx s which 
will be of interest) 

2(- l/Z-is) 

r ( + - is + m) ' 
~ 2 ( - 1 / 2 - k )  

X", r ( $ - i s + m ' )  
( M )  = e x p [ i ( 2 m p  + Zm'v)] 

r ($  + is) r(i + i s ) P *  
2+/2isr (f + is + m) r (i + is - mt) 



The g2(-1/z+is)(M) have the property [Ill 

This symmetry implies that Em,,( s) is a function of s2, so that 
m 

I-m-,,,,(M,Lr) CO = exp[i(2mp + 2m'v)]T'/2 exp [w,,,(s)] d s  

with 

w,,t(s) = qmml(s)  + c,,,(s) - i s ln  T. 

The further symmey 

together with (14) allows the {Em,,,,(s)] to be expressed in a form which is more 
convenient for analytic continuation: 

'Ib proceed further, it is necessaly to examine the behaviour of the {wmm,(s)} 
in the complex plane of s in the hope that an integration contour can be found that 
will facilitate the evaluation of the integrals { I Z A , ( M , L z ) } .  In this connection, it 
will transpire that the region close to s = i/2 is of particular interest At the value 
s = i/2, kz(-1/2-is) = g2(0) attains the form 
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where the (infinite) matrices 22”, and vectors la*) have non-trivial dependence on 
the parameters of the model. The eigenspectrum of this decomposable form com- 
prises a single eigenvalue at unity, and the union of the eigenspectra of the matrices 
ky’. It is easily shown that, except in special cases, the latter two subspaces have 
upper spectrum-limits (in modulus) which lie below unity. The exceptions correspond 
to situations such as a periodic system with no disorder, or the band-centre of the 
Anderson model with pure off-diagonal disorder, and will not be considered here. 
This situation of a discrete eigenvalue at the top of the spectrum will subsist at least 
in the region close to s = i/Z, and it is convenient within this region to decompose 
(2z(-1/z-is)) into the sum of the contribution of the discrete eigenvalue and of the 
remaining part of the spectrum 

(20) -Z( - t /Z- i s )  (t -), ) = I ~ ~ o ~ ( s ) ) ‘ ” P [ ~ ( ~ ) l ( ~ ( o ) ( s ) l  + (x ) (kZ(-l/Z-is) 

In the above equation, the eigenvalue of greatest modulus has been denoted 
exp[$(s)] for later convenience. It will also be useful to perform a correspond- 
ing decomposition of the {wmm,(s)}, 

W ” l ( S )  = w Z L , ( s )  t w:;)(S) (21) 

with superscript (0) pertaining to the eigenvalue of greatest modulus and (+ -) to 
the remainder of the spectrum. 

The particular case of I,”,”, from which the probability distribution of the single 
variable T is immediately obtained as p ( T ) d T  = I,$,’(T,Lr)dT/T2, will now 
be investigated. For large Lz, and for T attaining a value within the bulk of the 
distribution, it is found that wh:)(s) possesses a saddle-point which is close to s = i/2. 
The contour of integration will be deformed to pass through this saddle, allowing the 
contribution of the eigenvalue of greatest modulus to be determined by the method of 
steepest-descents. The saddle-point analysis proceeds in a manner which is precisely 
analogous to that which is presented in [7] for random-phase models, and yields the 
following contribution to I,$,“: 

In the above equation, the function SoO(s) is defined by 

sa bY 

sa = i / 2 +  6~ , ( s , ) /$”( s , )Lz  (24) 

$‘(sa) = -ia. (2.5) 

and the centroid of the distribution, a L r ,  is found from 



Probabifiy distributions for disordered ID wires 7801 

Since the position of the saddle is very close to s = i/2. the replacements 
6 , 0 ( ~ m )  N 600(i/2) and +"(sa) rr +"(i/2) are justified in equation (22). It is easily 
found that, irrespective of the form of p,(M), one has 

exp [So0(i/2)] = 1 / 2 a  +(sa) rr -i.6bo(s,)/+"(s,)Lz. (26) 

It is also found that +"(i/2) is real and negative. 
The contribution to the integral I,"," stemming from & -)(s), and the portion 

of the contour for which the decomposition (21) is not valid (if such a portion exists) 
will decay with Lz  relative to the contribution due to w ~ ) ( s ) .  It will be assumed 
that no poles exist between the real-axis and the deformed path, so that the dominant 
contribution to the integral is that of the saddle. From (22), (26) and the negative 
nature of $"(i/2), one thus obtains the following form for the probability density of 
-In T 

d (-In T) 
~ ~ - ~ ~ ( - l n T ) d ( - I n T )  = I&'(T,Lz) - 

] d(-1nT) 
1 (-ln T - aLz)> [ -  2bLz 

- 
-&KG 

with 
{ a  = i+'!,i/2) 

b = -+ (i /2).  

Thii is of precisely the same form as the random-phase solution; the extension to 
non-circular ensembles merely induces a more complicated form for the function 
+(s) (being derived from the eigenvalue of greatest modulus of an infinite matrix). 

Attention will now be turned to the extraction of the I::, for general m, m'. 

The integration contour will thus be deformed to pass through the saddle as in the 
evaluation of I,"," discussed previously. The saddle yields the following contribution 
to the integral IF:-,,: 

It is found that w,,,(s) (0) possesses a saddle point close to s = i /2  for all mm'. 

Lm--,(M,Lz)  ( O F 0  = exp[i(2mp + 2m'v)]Igo(M, Lz)gk g;, (29) 

where 

9; = (-mlAm(i/2)) 

(30) 
1 - (-1)"lm'l Iims-i,2 [(A,,,(s)l- m') (+ +is)-'] m' # o c sb gm* = - (A,,,(V2)lo). 

Consistent with the normalization condition, it is possible and convenient to make 
the choice (0/Am(i/2)) = (Am(i/2)10) = 1, implying in particular that g; =,gb = 1. 
The similarity transformation (14) enables the {gk,} to be expressed more sunply by 

In contrast to the situation in the evaluation of I&', for m, m' both positive or 
both negative, there exists a (simple) pole at s = i /2  of exp[wCf,;)(s)]. This pole 
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will contribute to the integral, after the deformation of the contour, an amount which 
is calculatcd to be 

Z(0) Lm if m ,  m’ both positive 

if m,m’ both negative. 
- ( “ / 4 2 2 , ( ( 2 -  ) ) -m-m‘ 

- ( m ~ / m ) * ~ ~ ~  ((2yo))~z) - { m--“ 

The matrices %yo) and ?!(’) are related by a simple similarity transformation to 
D’ E D- and D’ E D+ respectively (this follows by use of (14) and the similarity 
transformation which relates kz(-k)  to Dk, equation (A.10)). Indeed it is found that 
the pole contribution acts precisely to cancel the contribution of D’ E D* in the 
expansion (3). The contribution of the integration along the deformed path other 
than that due to the saddle of w : ~ , ( s )  can be ignored for L r  > 1. 

3.2 Coninbution of the class C‘lz 

The contribution of the class C1/z in the expansion of the probability density, equa- 
tion (4), can bc evaluated in a manner which is precisely analogous to that presented 
in the previous subsection for the class Co. The set of integrals { I $ $ ( M , L r ) )  
(m,m‘ = rt1/2,&3/2,. . .) will be defined in direct analogy to the { I $ Z ( M ,  L z ) }  
(equation (7)).  As was the case for the continuous class CO, it is found advantageous 
to span C’/2 with the ~ z ( - l / z - i s ) .  Under the assumption that within this class, the 
eigenspccaum of (2z(-z/z-is)) is discrete at its upper limit in the vicinity of s = i/2, 
the integrals {I:$} can be performed by the saddle-point procedure (no poles are 
encountered for these integrals). The result is 

I ? ~ - , , , , ( M ,  ~ z )  = expji(2m’p + 2m’v)l (-mlxz 112 I 1 9  
(i/2))(x:”’(i/2)1- m’) 

The essential observation is that $c1,4i/2), in contrast to the value 7b(i/2) per- 
taining to the CO class (which is zero), is a negative quantity. This implies that the 
contribution of the class C’I2 decays exponentially relative to that of the class CO, so 
that for L z  > 1 the contribution of C’/’ to the probability distribution P ~ , ~ , ( M )  
may be neglected. (This dominance can also be deduced if it is the case that the 
spectrum of (2z(-1/z-i3)) is continuous at its upper limit, although the exponential 
nature will in general be modified.) 

3.3. Contribution of the discrete classes D* 
It is easily deduced that the eigenspectra of the averaged representations belonging 
to the discrete classes extend to values below unity. Since the ID;,,} for k = 
3/2 ,2 ,5 /2 , .  . . are normalizable with respect to the invariant measure, all but the 
contribution of D’ E D* in the expansion of the probability density can be ignored 
for Lr > 1. However, it has been dcduced that the latter contribution is precisely 
cancelled by a component arising from the  continuous class Co. 
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3.4. The resulting distribution 
The result of the previous three subsections is that the probability density pl,Lc,( M )  
is given simply by E,,, I E Z ' ( M ,  L z ) .  Insertion of the result (29) for the {I:$'} 
yields the following factorized form for the distribution 

p l - L L ( M ) d d M )  = p ~ ~ L , ( T ) p i ~ ( p ) p i ~ ( v ) d T d p d u  (33) 
with 

m 

. 
27r (344 

The distributions P ! ? ~ = ( T ) ,  p { $ ( p )  and p i z (  U) are separately normalized with 
respect to integration over the range of their arguments. 

The transformation of variables from the phases p and v to the reflection and 
transmission phases (+r and &) is straightforward: the joint distribution of the latter 
two variables is given by 

P i k 2 Y & , 4 t )  = P i 2  ( A  - A / 2 )  P K  (4J2).  (35) 
The asymptotic distribution of the single variable &, which in the present work is 
given simply by Jp!k*4')(+r, +k)d+t = p i 2 ( + J Z ) ,  has been studied earlier [U] by 
an approach which can be shown to be in exact correspondence with the evaluation 
of (34c) with the argument br/2. 

is 
given purely in terms of the eigenvalue of greatest modulus and the associated left and 
right eigenvectors of the averaged representation (k2( - ' /2 - i s ) )  in the close vicinity 
of s = i/2. With respect to the distributions appearing in the factorization (33) 
of the distribution, P ! ~ ~ ~ ( T )  is determined purely by the eigenvalue information, 
p [ 2 ( p )  is just the Fourier transform of the right eigenvector at s = i /2  and p;?(v)  
is the Fourier inverse of the left eigenvector (after the relevant limiting procedure of 
equation (30)). The non-trivial nature of these eigenvectors inherent in the description 
of non-circular models implies that for such ensembles the phase distributions do not 
become flat even in the Limit of large Lz.  The intricate co-dependence of the matrix 
element? of ( ~ z ( - 1 ~ 2 - i a ) )  on the form of the distribution p , ( M )  of the individual 
Scatterem and on s indicates that, in general, single parameter scaling of P ~ T ) ~ ~ ( T )  
will not be obeyed. 

Before applying the foregoing analysis to particular models, it is worthwhile re- 
fining the treatment of P!T_'~,(T). In particular, as well as the mean and variance, 
which are sufficient to describe the bulk of the distribution, all the higher-cumulants 

in the neighbourhood of s = i/2. These higher eumulants characterize the deviations 
from the Gaussian form of the tails of the distribution. 

It is apparent that the bulk of the weight of the probability density 

of the distribution of -In T can be determined from the properties of (g2(-1/2-is) ) 
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4. The cumulants of -II@ 

The statistical cumulants of - I n  T, which can be used to characterize the probability 
distribution of that variable, can be determined from the behaviour of the moments 
(T”) in the region of close to zero. For a system consisting of Lz scatterers, one 
has explicitly 

The dependence of the moments as a function of U and L r  can be extracted by direct 
expansion in terms of the irreducible representations; since these quantities have no 
phase dependence, only &l’z-is) E CO appears in the expansion: 

m 

ds .  (37) 

If one attemps to extract the functional form of a , ( s )  by direct use of the orthogo- 
nality relationship (k7), it is found that the resulting integral is convergent only for 
U > 1/2 [ll]. The case of U < 1/2 can be handled by the introduction of discrete 
components to the harmonic analysis. With the expansion 

it is found that the integral determining the function b , ( s )  is rendered convergent if 
the {a$p)] are chosen to be 

( - 1 ) k - - ” - p c .  3-k jc,-.-jcp-,)2] . (39) 

In equation (38), the upper limit of thc summation is determined by 

n = int[-v 4- 3/21 (40) 
where the function int[r] yields the largest integer not greater than I. 

For v equal to a negative integer, equations (38) and (39) correspond exactly with 
a direct symmeny reduction of the direct product of -2u identical transfer matrices 
(as presented in [ll]). It may thus be regarded as an analytic continuation of this 
symmetry reduction; at non-negative-integer values of U the matrices which describe 
the evolution with length of T” become infinite (these are just the representations), 
and also there enters an integral over a continuous class of such matrices. For 
v > 1/2 only this continuous class remains to describe the evolution 

For v in the region (U < 1/2), it can be deduced that, for long-lengths, the 
discrete part corresponding to p = 0 in the expansion of (Tu),, dominates over 
the remaining contributions (this expansion is obtained by simply averaging (38)). In 
the long-length limit, the latter components become irrelevant, and the evolution of 
(T”),, is given simply by 
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Returning to the evaluation of the cumulants, substituting the explicit form (40) 
for the moments into equation (36), and making use of the dominance of the 
eigenvalue of greatest modulus for Lr 1 yields (after the change of variables 
v = 1/2 + is )  

a,Lz + P, (42) c;-Lz = 

a, = in$(n)(i/2) (43) 

where 

and 
i (d/ds)  [ ( o l ~ ~ O ~ ( ~ ) ) ( ~ ~ o ~ ( ~ ) l o ) l  I d / Z  i f n = l  

{ +i"(d"/ds")ln [(OIX(o)(s))(X(o)(s)lO)] I.=i/2 if n 2 2. 

In the above equation, C(n) is the Riemann zeta function of argument n. From 
the asymptotic length dependence of the cumulants, equation (42), the corresponding 
distribution can be found following the method of [SI: this procedure yields precisely 
the distribution (27) obtained previously (there is the notational correspondence a1 -+ 
a, a2 .-f b). 

p, = (-1)yn- I)!C(n)(z-zn) (44) 

5. Application to the Anderson model 

The foregoing analysis will now be. applied to the case of the Anderson model for a 
range of disorders and band-energies. The approach will be to calculate the function 
$(s) (in the neighbourhood of s = i/2) together with the Fourier coefficients {gk) 
and {d,} either by perturbation theory, or, for more gencral disorders, by numerical 
truncation of the relevant (infinite) matrix. 

The Hamiltonian for the Anderson model is of a tight-binding form, and is defined 
in one-dimension by 

H=C c,l i)(i l  t xy,l4(jl. (45) 
VI) 

Here E; is the site-energy associated with the orbital ti) centred at lattice.-site i, and 
the K J  are the hopping elements which connect nearest-neighbour sites only. The 
disorder in the model enters via randomness in the site-energies (diagonal disorder) 
and/or in the hopping-integrals (off-diagonal disorder). Only the case of diagonal 
disorder will be investigated here, with the site-energies within the disordered system 
taken as statistically independent but equivalent variables, each being described by a 
probability distribution p ( e )  which is chosen to be symmetric about the mean. The 
hopping terms are taken as being equal to V for all nearest-neighbour pairs. The 
disordered system is taken as the region 1 < i < L r ,  and is embedded between 
two semi-infinite ordered leads with site energies all equal to the average site-energy 
within the disordered region. 

In the basis of the {li >), the Schrbdinger equation for energy E can be written 
in the form 
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where ME is a real-space transfer matrix determined purely by the properties of the 
nth scatterer, and is given by 

A change of basis to the set of Bloch-waves of the ordered ensemble-averaged system 
can be performed, yielding a transfer matrix which relates incoming and outgoing 
propagating waves in the way described in the introduction. It has the explicit form 

i6,e-ik (1 + i6,)eW'k I . (1 - i6,)eik -i6,eik 
M n =  [ 

Here k is the wave-vector, which is related to the energy by the familiar tight-binding 
dispersion relation 

E - (e) = -2V cos k (49) 

and 6, is the statistical variable 

6, = (E, - ( ~ ) ) / 2 s i n  k. (50) 

Comparing equations (47) and (l), one can identify the parameters T and 1 for 
the nth scatterer as 

T, = -ibn/(1 -i6,) t ,  =(1/(1 -i6,))e-". (51) 

5.1. Weak disorder 

Using the Anderson model forms for the reflection and transmission coefficients 
(equation (Sl)), the elements of the averaged representation (kz(-l/z-is)) can be 
calculated as an expansion in the moments (about the mean) of the siteenergy 
distribution (((e - (e))2n)), or equivalently in the moments of the distribution p ( 6 )  
of the 6, (only even moments occur in the expansion since the distribution of the s i t e  
energies is assumed symmetric about the mean). Perturbation theory in the disorder 
can then be applied to the matrices to determine the eigenvalues and eigenvectors. 
As found for the representation studied in [I51 (referred to in that work as the 
reflection transfer matrix), the nature of the perturbation theory necessary depends 
on the value of k; if k is rationally related to T by 

k = w / q  (52) 

non-degenerate perturbation theory can be applied up to 2mth order in the site- 
energies where m is given by m = int[(q + 1)/2]. At higher-orders the degeneracy 
amongst the unperturbed zero-disorder eigenvalues needs to be explicitly considered. 
The strongest effect of this degeneracy thus occurs at the band centre. 
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5.2.1. Generic bond energy. At a position in the band where the use of ordinary non- 
degenerate perturbation theory is permitted, the eigenvalue of greatest modulus and 
the associated eigenvectos are easily calculated. Considering first the distribution 
p13Lz(-lnT) (which is related to I):T_)~*(T) by a simple change of variable), the 
coenlcients Q, and 0, which, together with (42) determine the cumulants of -In T 
for large Lr, are calculated to be 

a 1 = a(') - 3&) + ;(&))a + q a ( 3 ) )  

Q - 2&) - 1 (2)  + $(a('))2 + U(u(3))  
p1 = U( &)) 
p2 = - = 2 / 3  + U(&))  

(53) 2 -  2a 

a 3 -  - 3&) - 9(&))2 + U ( a ( 3 ) )  
a4 = 6 d 2 )  - 18(d1))' + U(uC3)) 

Here a(") is the 2nth moment of 6: 

p3 = 12<(3) + U(a( ' ) )  
p4 = -14r4/15 + U(&)) .  

dn) = (6'"). (54) 

i 
For the a,, (n > 5) one must look to sixth order or higher for the leading contri- 
bution. At second order, it is seen that the variance (the second cumulant) is equal 
to twice the mean (the first cumulant) as L r  -+ CO, and that all other cumulants are 
zero. This result was found in [SI by the use of a highly reducible representation, 
and implies that the moments (7';') for U < 1 /2  (apart from a length-independent 
prefactor) arc given correctly by use of the log-normal form which describes the bulk 
of the distribution. 

Figure 1 shows a comparison of the analytical forms for the first three cumulants 
with a numerical simulation. The k-value was chosen as c0s-l 0.375, and the site- 
energy distribution was taken as Rat with variance 0.05 v. 

The relevant eigenvectors are also easily calculated by perturbation theory, and 
yield for the joint phase-distribution 

The limiting distribution of the transmission phase ~{k)(q4~) = Jpfk,4t)(C$r, 4J d$r 
is found from (55) to be given by 

Hence to lowest order in the disorder (&)), p f k ) ( & )  is Rat over its range. 

5.2 Band-centre anomab 

At the band-centre, the unperturbed eigenvalues (pertaining to the ordered system) 
take only the values +l. At lowest order in the disorder, it is possible to work within 
the subspace of the (infinitely degenerate) unperturbed eigenvalue at unity. This 
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yields a tri-diagonal form for the averaged representations. Numerical truncation 
and calculation of the relevant eigenvalue and eigenvectors allows for the probability 
distributions to be determined: the truncation size is increased until convergence is 
achieved. 

The a, which determine the asymptotic length-dependence of the cumulants (via 
equation (42)) are calculated to be 

cy1 = 0.9138932d') a2 = 1.9140533d') a3 = 0.519054d') 
a., = 1.0493a(') as = O . O Z O u ( ' ) .  (57) 

In contrast to the situation at a generic band-energy, the a, for R > 3 now are of 
order U( ' ) ;  the thud and higher cumulants thus show a marked anomaly at the band 
centre at weak disorder. This behaviour implies that the moments (Tu) (v < 1/2) 
will not be calculated correctly by use of the lognormal form which describes the 
bulk of the weight of the probability distribution in the long-length limit. It is also 
seen from (57) that the relationship between the mean and variance which exists at 
a generic band-energy (a2 = 2 a l )  is modified at the band-centre. This implies a 
breakdown of the  single-parameter scaling of the distribution of T even in the limit 
of weak disorder for the Anderson model. 

The band-centre anomaly in the first cumulant (or equivalently the localization 
length) has been observed in references [2C-22]. 

I_ I 
L2 

Figurc 1. Numerical simulation showing the evolu. 
tion of the first three cumulanls of -In T with 
length, lor an Anderson tight-binding Hamilto- 
nian with a Rat site-energy distribution of variance 
0.05 v. The I;-value was chosen as cos-' 0.375. 
The theoretical asymptotic behaviour of the cumu- 
lank is included. 

m .m ea m 7m ,:m 1- I_ lam 
L2 

Figure 2. Numerical simulation showing the evolu. 
tion of the fint three cumulanls of -In T with 
length, for an Anderson tight.binding Hamilto- 
nian with a Rat site-znergy distribution 01 variance 
0.05 at the bandentre. The theoretical asymp- 
totic behaviour of the cumulants is included. 

Figure 2 shows band-centre data for the first three cumulants obtained from a 
numerical simulation, togerher with the analytical results. The site-energy distribution 
was again taken as flat with a variance of 0.05 v2. 
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The Fourier-components of the distributions of p and v are found from the 
eigenvector information to be 

gi = gb = 1.0000 

g; = gi = 1.1094 x 10- 2 

g; = g: = -8.6107 x lo-' 
(58) 

g; = gb = -1.5872 x lo-'. . . . 
Note that these values are at zero-ords in the disorder. The resulting joint distribution 
of Q, and +t is shown in figure 3, and is indistinguishable from the results of a 
numerical simulation for very small disorders. The reflection-phase distribution at 
the band-centre has been displayed earlier in [15]. 

Figure 3. Asymptotic joint distribution of the re- 
flection and transmission phases for the Anderson 
model a1 the bandcentre and at  weak disorder. 
The plol-was obtained by truncation of the repre- 
xatations. 

5.3. Iniermediaie disorder 

Higher disorden can be dealt with by numerically integrating the elements of 
k2(-1/2-18) (which is of course truncated to finite size) weighted by the required 
probability distribution. The relevant eigenvalue and eigenvectors can then be found 
numerically, and the truncation size increased until convergence is evident. The range 
of disorders for which a converged probability distribution can be found by such a 
method depends on the shape of the site-energy distribution and on the energy: as 
an example, for a flat site-energy distribution, convergence over most of the band is 
easily achieved up  to a site-energy variance of about 5 Vz. With regard to the phase 
distributions, it is clearly not possible to calculate the Fourier coefficients ({gk} and 
{g!,,}) for arbitrariiy large m, implying a lack of knowledge of the high-frequency 
components of the distributions. In the case of ensembles with continuous disorder 
distributions, this causes no hindrance since the phase distributions for such mod- 
els are sufficiently smooth and slowly varying. For discrete distributions, however, 
the singularities [16] which can occur in the phase distributions will of course not 
be reproduced, but the approach is sufficiently convergent and numerically stable 
to produce good overall resolution Despite the non-negligible contributions of the 
high-index eigenvector components with respect to the phase-distributions possible 
in discrete ensembles, it appears that the distribution p',z, ,(T) stemming from the 
eigenvalue information displays good convergence as a function of truncation size. 
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Fly= 4. Numerical simulation showing the NO- 
lution of the first three eumulanu of - In T with 
length, for the Anderson model with a flat site- 
energy distribution of variance 1.0 v?. Ihe k-value 
was chosen as -1% Ihe theoretical asymptotic be- 
haviour of the cumulanls is included. 

Figure 4 shows the length behaviour obtained from a simulation of the first three 
cumulants at k = a/3, for a flat distribution of site energies of variance 1.0 V2. The 
theoretical asymptotic predictions are included. 

The theoretical asymptotic joint reflection and transmission phase distribution 
for a flat distribution of site energies of variance 1.0 V 2  at k = cos-'O.375 is 
shown in figure 5; this distribution is confirmed by numerical experiment. Figure 
6 shows the reflection and transmission phase distributions for the binary-symmetric 
site-energy distribution p ( c )  = 1/26(e - eo - 1.0) + 1 / 2 6 ( ~  - eo + 1.0) at k = 
0 . 4 5 ~ .  Convergence of the first 100 Fourier coefficients was achieved for these 
distributions. The results agree with numerical simulation at the resolution implied 
by this truncation ((171 contains a numerical simulation of the reflection distribution 
for the same ensemble, and provides a discussion of some of the singularities that 
occur). 

Figure 5. Asymptotic joint distribution of the re- 
flection and transmission phases for the Anderson 
model with a flat site-energy distribution of van- 
ance 1.0 V2 at  k = c0s-l 0.375. The plot was 
obtained by truncation of the representations. 
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Figure 6. Asymptotic distribulions of (a) lhe reflection phase and (6) the transmission 
phase for the Anderson model with the binary-symmetric sile-energy distribution p ( r )  = 
1 / 2 6 ( € - r o - 1 . 0 ) + 1 / 2 6 ( s - € o + 1 . 0 )  at k=0.451r. The cuweswereobtained by 
Wncation of the representations. 

6. The resonance tail of the distribution 

The form of the probability distribution pIeL,(M) with T such that - In  T < Lr 
can also be evaluated by use of (3) for general p,(M) by .a simple generalization of 
the method used by Mello [7] for the special case of p l ( M )  isotropic over the phase 
variables. It is found that the contributions of the classes C1/2, D* decay with Lr 
relative to the contribution of Co. With the assumption of the presence of a discrete 
eigenvalue at the top of the spectrum of (g2(-1/2-is)) for s close to zero, the set 
of integrals {I;:,} (which are defined as in equation (7)) can be calculated by the 
saddle-point method following [7] to yield 

The contribution of the remainder of the eigenvalues of (k2L1!2)) can be neglected. 
Thc resulting probability density is thus given simply as the sum of the right-hand side 
of equation (59) over m and m!. The shape of this tail of the distribution is seen to 
be independent of length; only its overall scale is set by Lz (together with the range 
of T for which (59) is valid). The eigenvalue and associated eigenvectors appearing 
in (59) can be calculated by perturbation theory or by numerical truncation. The 
latter procedure was carried out for the case of the Anderson model; the spectrum 
was confirmed as being discrete at its upper limit in modulus and the extraction of 
the eigenvalue of greatest modulus and the associated eigenvectors was found to be 
convergent and numerically stable over a wide range of disorders and energies (see 
also [ll]). 

The distribution of the single variable T within the tail is given simply by 

re5 PI-,, 
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The moments (TY) (v > 1/2) are dominated by the contribution of this tail of the 
distribution. Indeed the integrals [p;:,,T”dT can be found in the standard tables 
(e.g. [=I), and are found to be in exact agreement with the (TV) (v > 1/2) obtained 
in 1111 by direct spectral analysis of these quantities. 

7. Conclusion 

The problem of evaluating the joint probability distribution p14Lr(T,  &, &) of trans- 
mission intensity, reRection phase and transmission phase of a disordered ID wire 
composed of Lz elastic scatterers, given the distribution ~ ~ ( 7 ‘ , & , + ~ )  of the con- 
stituent scatterers, can be addressed by direct expansion in terms of the irreducible 
representations of SU(1,l) (the group topologically formed by the (IC-space) transfer 
matrices) without recourse to the assumption of p,(T, 4r, &) isotropic over its phase 
variables or to the limit of weak disorder. Thc method was applied to the case of the 
Anderson model over a range of disorders and band-energies. As well as the bulk 
of the distribution, the resonance tail can also be determined for a wide range of 
ensembles. 
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Appendix 1. The irreducible representations of SU(1,l) 

This appendix provides a brief discussion of the unitary irreducible representations 
of SU(1,l) as categorized originally by Bargmann [17], and introduced in connection 
with transport in disordered ID systems by Kirkman and Pendry [l l] ,  and Mello [7]. 

The index of a representation will be denoted IC, and the row by m. The repre- 
scntations which form a complete set are listed below. 

(i) continuous class: 
(1) integral case (C i ) ,  

(2) half-integral case (C:/’), 

m = 0, *I, rt2, . . . 
k =  1 / 2 + i s  o < s < o o  

m = &1/2, 13/2, , . . 
I C = 1 / 2 + i s  O < s < o o  

(i) discrete class: 
(1) maximal m ( D i )  

(2) minimal m(D:) 
k = 1 , 3 / 2 , 2 ,  ... 

k =  1 ,3 /2 ,2 ,  _.. 
m = - I C , - ( I C  + l ) ,  . . . 
m = IC, k f 1, . . .. 
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For the display of the explicit forms of the representations, it is convenient to 
define the variables p and U which are related to the reflection and transmission 
phases, +r and +t respectively, by 

exp [ i b  + UN = exp [i+J exp Mp - .)I = exp Mbt - &)I (-4.1) 

and to define T by 

2 T = It]' = 1 - lrl (-4.2) 

where r and t are respectively the reflection and transmission amplitudes. The group 
is spanned by the parameter ranges 0 < T < 1, -T < p ,  U < T. In terms of these 
variables, Bargmann's unitary irreducible representations take the form 

d,,, ( T )  e-2i"v (-4.3) D,,, k ( p , ~ , u )  = e-Zimp 

with. 

4" ( T )  = e,,#(IC)(l- T)lm-"l/ZTk 

x 2Fl[k+ max(m, m') ,k-  min(m,m'),lm - m'l + 1;1  - TI. 

(-4.4) 

In this equation, zF,  is the hypergeometric function of Gauss, and Om,, is defined 
bY 

O,,(k) = 1 (-4.5) 

m > m' 
m < m'. (-4.6) 

It can be shown that there exists orthogonality relations amongst the representa- 
tion elements. This is expressed by 

if IC, k' E different classes 
(-4.7) 

where k = 1/2 +is and IC' = 1 / 2  + is'. The invariant measure dp(M) is given by 

dp( M) = ( Z ~ ) - ' d p  dvdT/T2 (-4.8) 
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and the weights wk and w( s )  by 

w k = 2 k - 1  k €  D* k > 112 

w ( s )  = 2s tanh  as k E CO k = 1 / 2 + i s  (A.9) i w ( s )  = 2scoth as k E C'I2 k = 1/2 + is. 
In [Ill, irreducible representations were derived by decomposing the direct prod- 

uct of n identical transfer matrices according to the permutation group of order n. 
Within a subspace, a procedure for the analytical continuation to non-positive-integer 
n was developed. The re resentations thus constructed are denoted in [ I l l  by *2N.  

similarity transformation; this transformation merely induces the changes 
The reprcscntation 2'(- P can be related to Dk as defined in (A.3) by a simple 

r(1- k + m ) / r ( l -  k +  m') if m m' 
r( 1 - k - m)/T(I - k - m') m -t -m,  Omm,(k) + [ (-4.10) if m < m'. 

Due to the need for analytic continuation, it is found more convenient IO spaff the 
continuous representation classes CO and C'1' with the kz(-l/*-is). 
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