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Abstract. The scattering of a one-dimensional disordered wire consisting of elastic,
time-reversai-invariant scatterers, is specified completely by the iransmission intensity
T, reflection phase ¢; and transmission phase .. The problem of extracting the
joint distribution pj..r,(T, ¢, ¢t) of these variables for a system of large length Lz,
given the distribution p1(T, ¢, ¢} of the individual scatterers is examined without
recourse 1o the random-phase assumption and without restriction to weak disorder. The
method adopted is to expand the distribution in terms of irreducible representations of
SU(1,1), the group topologically formed by the k-space transfer matrices which describe
the muttiple scattering. Both the bulk of the distribution, and the resonance tail are
examined. The method is applied to the case of the Anderson model over a range of
disorders.

1. Introduction

It is well known that in the absence of inelastic effects, the resulting coherent interfer-
ence of the electronic wavefunction in a disordercd system induces strong fluctuations.
Quantities such as the conductance become sensitive to the precise impurity arrange-
ment, and the probability distributions describing such quantities can become broader
as the system-size is increased. For one-dimensional and quasi onc-dimcnsional dis-
ordered wires consisting of elastic scatterers, it has been established [1-9) that the
logarithm of the conductance is a well behaved statistical quantity, being described
approximately by a Gaussjan for long lengths, and that this variable should be used to
characterize the ensemble as opposed to the non-self-averaging conductance. Partic-
ular emphasis has been put on the scaling properties of the distribution; specifically,
the question arises as to whether single-parameter scaling is obeyed. It is by now well
established [7, 8] that, for 1D systems, the distribution is characterized by a single
parameter only in the limit of weak disorder.

Despite the log-normal form describing the bulk of the distribution of the con-
ductance of long 1D wires, deviations occur in the tails, and statistical averages using
this form must be taken with care. In particular, the moments {g*} (v > 1/2) of the
conductance are never given correctly by such an average [8, 10, 11]; these moments
are dominated by statistically rare resonance-states which give rise to exceptionally
large conductances. :

Theoretical studies of the conductance have been based on the Landauver formula
[12] which relates the conductance to the transmission intensity T' of the disordered
system, thus placing particular interest on the scattering characteristics of the wire.
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The case of random-phase models has been studied in particular detail by Mello [7],
who derives an analytic expression for both the mean and the variance of the distri-
bution in terms of the distribution of the individual scatterers (assumed statistically
independent but equivalent). For such ensembies, the distributions of the transmis-
sion and reflection phases (which together with the transmission intensity completely
characterize the scattering of a single-channel system consisting of time-reversal in-
variant scatterers) are taken as flat over their range. This assumption induces great
simplifications in the description of the evolution of the probability distribution with
system-size, and extensions of analytic work to more physical models have concen-
tratcd on the limit of weak disorder [8]. For non-random-phase models, there also
arises the non-trivial question of the form attained by the transmission and reflection
phase distributions in the limit of large system lengths [13-16].

In this paper, the asymptotic joint probability distribution of the transmission
intensity (T'), reflection phase (¢.) and transmission phase (¢,) is derived for ensem-
bles not restricted to being comprised of random-phase scatterers nor to the limit
of weak disorder. The approach is based, as in [7], on the observation that the
k-space transfer matrices (defined below), describing single-channel elastic scatterers
obeying time-reversal symmetry, topologically form the group SU(1,1). The unitary
irreducible representations of this group which form a complete set are known [17)],
and direct expansion of the joint probability distribution in terms of these represen-
tations facilitates the calculation of its form for large system lengths. Both the bulk
of the distribution and the resonance-tail can be extracted. The use of representation
theory in the study of disordered systems was initiated by Kirkman and Pendry in the
extraction of the long-iength behaviour of the moments {T%) (v > 1/2) [11], and in
the calculation of the localization length and density of states [18] (see also [19] for
such calculations). The asymptotic distribution of the reflection phase has also been
studied by such means [15]. In references [11, 15, 18, 19], the representations are
referred to as ‘generalized transfer matrices’.

The transfer matrix provides a simple means with which to describe multiple
scattering; it relates the incident and reflected wave amplitudes at the left to those at
the right of a scattering system. In terms of the refiection and transmission coefficients
(r and ¢ respectively) of the medium, it has the explicit form

=1 ¢ 1p
M= |:t*—-1.r.* t*—l ] - (1)

The transfer matrix (M,_ ) for a system composed of Lz scatterers can be con-
structed from the the transfer matrices of the individual units by simple multiplication

Lz
Ml—-Lz = ]___[ Mn' (2)
n=1

The fact that the transfer matrices of the scatterers are all members of the group
SU(1,1), and that the right-hand side of (2) is just a product of such clements, allows
powerful group-theoretical results to be applied in the calculation of the system-length
dependence of quantities of interest. The next section discusses the application of
such ideas to the extraction of the joint probability distribution.
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2. Methodology

Cast in terms of transfer matrices, it is required to obtain, given the distribution
p,(M) of the individual scatterers, the probability distribution p,_ ;,(M) resulting
from the successive ‘convolutions’ implied by (2) (the scatterers are assumed sta-
tistically independent but equivalent). The approach taken here will be to directly
expand the probability density p,_,; .(M) in terms of the irreducible representations
of SU(1,1), the group formed by the (k-space) transfer matrices. A discussion of the
properties of these irreducible representations that will be required is presented in
the appendix.
With the notation of the appendix, the spectral analysis takes the form [7]

Pl...Lz(M) =Z Z Dmm‘(M)((Dk>lz)mm'wk

D% k= 13/2
.'

LI f D2 (MY(DY2HYy, ) it s) ds )

cnif2mm?

where the following definition has been made

(D" 1. donmt = [ Do (MIPr_aa(M) da(M). )

The probability density is here considered to be relative to the invariant measure
dp(M), so that in particular the normalization condition is [ p,_,;,(M)du(M) = 1.
Exploiting the statistical independence and equivalence of the individual scatterers,
and utilizing the representation property

Lz
DF(M,_ ..} = [] DF(M,) (5)
n=1

equation (4) can be re-expressed as

UDF) L ) mme = UDFYE?) (©)

where the average is taken over the probability distribution for a single scatterer.

The procedure will be to extract the contributions in the expansion (3) which
dominate for large system lengths. The case of the bulk of the distribution will be
examined first.

3. The bulk of the distribution

It is convenient to determine the contributions of the various classes of representations
separately. An examination of the contribution of the continuous class C° will be
performed first.
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3.1. Contribution of the class C°
It is required to evaluate, for large Lz, the set of integrals

]

Igm.(M,Lz)=fO DY (My((DM2HyEa) (s)ds

m,m =0,%1,42,.... N

The casc of random-phase models has been examined in detail by Mello [7]. For
such ensembles, the averaged representation (D!/2+i*) has zero entries except for
the element m = 0,m' = 0, so that the matrix exponentiation in (7) can be per-

formed trivially. Only the integral IS’ is non-vanishing, Furthermore, the averaged
representations in the classes C'/2, D* vanish identically, implying that the entire
joint probability distribution is given simply by Ifnn(M, L2). This integral can be
performed [7] for large Lz by the saddle-point method.

For non-circular ensembles, the averaged representations do not condense, imply-
ing in particular that the matrix exponentiation is no longer straightforward. In the
evaluation of (7), it will be found necessary to deform the contour of integration, so
that it is required to obtain the analytic continuation of (D!/2+12}% into the complex
plane of s. Such a continuation has been accomplished by Kirkman and Pendry [11]
for the set of representations %2(~1/2-2} which are related to the D'/2+is ¢ CO by a
simple unitary similarity transformation (equation (A.10)). It is shown in [11] that the
%2(=1/2-19) retain their re};resemation status for arbitrary s, allowing the replaccment
(P(-1/2=12)y, == (2(-1/2-i2)1L2 3t any complex s and implying that

({}-(2(“1/243))*,[,;) A2(-1/2—i3)*)sz )

continuation ™ {Xcontinuat.ion
Although the similarity transformation relation between D'/2%is and {*(=1/2-15) can
also be extended to complex s, it is found to be more convenient to span the class

C® with the %*(~1/2-1s) due to the absence of square-root factors. In terms of these
representations, one has

IEL_M,(M,Lz)=fO FAL2 (MY (A2 Ly (s)ds. 9)

Henceforth in this section, the parametrization p, T, will be understood (where
p and v are related to ¢, and ¢, by equation (A.1)).
In order to describe the bulk of the distribution for large Lz, it is permissible

to use the asymptotic forms (for T < 1) of the elements %2-1/**)(M). For

Xmm'
compactness in the display of explicit forms, it will be assumed that m =z m' (the
IS, ... for m < m’ can then be constructed by use of the identity IS} (M, Lz) =
IS .(M, Lz) ). With this restriction, one has (over the region of complex s which
will be of interest)
1 ' .

Q=172 (MY el pyLlg=istm)
Xmm' (M) = expli(Zmu + 2m’v)) (3 —is + )

I'(5+is) T(1 4 is)2%e
2xt/2isl (1 +is+ m) T (3 +is — m')

I'(3—is)I(1-1is)2-%" 3
~27/2%s (3 —is+ m) T (3 —is — m’)

% T1}2—i.s

(10)
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The {IS, ,(M, Lz)} are then given by
IS (M, Lz) = expli(2mpu + 2m'v)]T1/?

X [ eRB U (5) + () — 1510 T]

+ XP [Nyt (=8) + §mum:(5) +isIn T} ds (11)
with
T (3+is)T(1 +is)2% tanh 7s
eXP [Tmome ()] " Amr (L +is+m)T (5 +is — m) (12)
and
F(z is + m) 23 ~1/2—ia)wy\ L
, SUaiemLay 3
exp [{mm ()] = (2 13+m,)((x ﬂ 1 ) mm (13)
The %2(-1/2+is)(M) have the property [11]
PT(A+is+m)T(2—is+m) o 1/2
-.2( 1/24is) 2 2 ~2(—-1/2—is)
Xmm! (M) = F'(A-is+m)T(3+is+m) Xomm! (M). a9
This symmetry implies that £ .(s) is a function of s2, so that
_m_m,(M Lz) = expl[i(2mu + 2m u)]Tll"’j exp [w,,(s)] ds (15)
-0 .
with
Wmmt(8) = i (8) + Epume(8) —isIn T (16)
The further symmetry
Xoid "7V (M) = U M) real s ty

together with (14) allows the {£,.,..(s)} to be expressed in a form which is more
convenient for analytic continvation: :

I'(l+is+m)
T'(i+is+m)

eXP [£m (8)] = (RPN e (18)

To proceed further, it is necessary to examine the behaviour of the {w,,..(s)}
in the complex plane of s in the hope that an integration contour can be found that
will facilitate the evaluation of the integrals {IS, (M, Lz)}. In this connection, it
will transpire that the region close to s = i/2 is of particular interest. At the value
s =12, x¥-1/2-i5) = > attains the form

o 29 ay 0
%2 ={0...0 1 0..0 (19)
0 o) 2O
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where the (infinite) matrices £3\"), and vectors le.) have non-trivial dependence on
the parameters of the model., The eigenspectrum of this decomposable form com-
prises a single eigenvalue at unity, and the union of the eigenspectra of the matrices
}“cim. it is casily shown that, except in special cases, the latter two subspaces have
upper spectrum-limits (in modulus) which lie below unity. The exceptions correspond
to situations such as a periodic system with no disorder, or the band-centre of the
Anderson model with pure off-diagonal disorder, and will not be considered here.
This situation of a discrete eigenvalue at the top of the spectrum will subsist at least
in the region close to s = i/2, and it is convenient within this region to decompose
{%*~1/2-1¢}} into the sum of the contribution of the discrete eigenvalue and of the
remaining part of the spectrum

(RHC12719) = O 6)) exp[( )] (NO(s)| 4 (FH 20+ =, (20)

In the above equation, the eigenvalue of greatest modulus has been denoted
exp[t(s)] for later convenience. It will also be useful to perform a correspond-
ing decomposition of the {w,,..(5)},

Dpme(8) = Wb () + Wi 2(s) 1)

mm' mm!

with superscript (0) pertaining to the eigenvalue of greatest modulus and (+ ) to
the remainder of the spectrum.

The particular case of IS, from which the probability distribution of the single
variable T is immediately obtained as p(TYdT = IS (T,Lz)dT/T?, will now
be investigated. For large Lz, and for T attaining a value within the bulk of the
distribution, it is found that wgg)(s} possesses a saddle-point which is close to s =i /2.
The contour of integration will be deformed to pass through this saddle, allowing the
contribution of the eigenvalue of greatest modulus to be determined by the method of
steepest-descents. The saddle-point analysis proceeds in 2 manner which is precisely
analogous to that which is presented in [7] for random-phase models, and yields the
following contribution to IS :

(0)c° _1f_2x 71
@7t =[] 7
. 1 —InT —alLz)?
X exp [500(.9“) + (130 + 5) alz+ (s, )Lz + ( Q:D"(SG;L:}
(22}

In the above equation, the function &,4(s) is defined by

I'(1+is)2%* tanh =s
2inl/2T (% +is)

exp [8go(s)] = (IO (s))(A(5)10) (23)

Sq bY

sa =1/2+ 84o(s,) /%" (s,) L2 (24)
and the centroid of the distribution, a Lz, is found from

W(s,) = —ie. (25)
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Since the position of ‘the saddle is very close to s = i/2. the replacements
Bool(Sa) = 8gg(1/2) and » "(s,) > " (i/2) are justified in equation (22). It is easily
found that, irrespective of the form of p,(M), one has

exp [6o(i/2)] = 1/27m  w(s,) = —iabie(s,)/¥ (s,)Lz.  (26)

It is also found that 1" (i/2) is real and negative.

The contribution to the integral I§’ stemmmg from w )(s), and the portion
of the contour for which the decomposition (21) is not vahd (1f such a portion exists)
will decay with Lz relative to the contribution due to wiy(s). It will be assumed
that no poles exist between the real-axis and the deformed path, so that the dominant
contribution to the integral IS’ is that of the saddie. From (22), (26) and the negative
nature of ¥ (i/2), one thus obtains the following form for the probability density of
=InT:

Pz, (—1lnT)d(~-InT) = ICB(T I )w
_ 1 {(=InT —aLz)? ~
= \/mexpl[— 5bLz ]d( InT) @7
with
o -
b=—v"(i/2).

This is of precisely the same form as the random.-phase solution; the extension to
non-circular ensembles merely induces a more complicated form for the function
$(s) (being derived from the eigenvalue of greatest modulus of an infinite matrix).

Attention will now be turned to the extraction of the IS, , for general m,m'.

It is found that wmm,(s) possesses a saddle point close to s = i/2 for all mm’.
The integration contour will thus be deformed to pass through the saddle as in the
evaluation of Igg," discussed previously. The saddle yields the following contribution
to the integral IS, __ .

I(O)C (M, Lz) = exp[i(2mu + 2m'u)]I§;°(M, Lz)g, gt (29)

—_—tn—-m'

where

g = (~mlAn(i/2))

{g’m, = (=™ | lim, s [l =) (B +is)7] m #0
= (A, (1/2)]0).

Consistent with the normalization condition, it is possxble and convenient to make
the choice {0, (i/2)) = (A, (i/2)|0) =1, :mplymg in particular that gj = g}, = 1.
The similarity transformation (14) enables the {g' .} to be expressed more simply by

e = (=1)™ (=m| A, (~1/2)). (31)

In contrast to the situation in the evaluation of IOUU, for m, m’ both positive or
both negative, there exists a (simple) pole at s = i/2 of exp[wmm,)(s)] This pole

(30)
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will contribute to the integral, after the deformation of the contour, an amount which
is calculated to be

“(m'/m))"cig?.,)ﬂ (()‘('i(o))r‘”)_m_m’ it m,m’ both positive
—(m! fm)D, ((;s‘ci("))“) I if m,m’ both negative.

-

The matrices %% and £*® are related by a simple similarity transformation to
D' ¢ D~ and D' € D% respectively (this follows by use of (14) and the similarity
transformation which relates R2(—%) to D*, equation (A.10)). Indeed it is found that
the pole contribution acts precisely to cancel the contribution of D* € D* in the
expansion (3). The contribution of the integration along the deformed path other
than that due to the saddle of w{®) ,(s) can be ignored for Lz » 1.

mm’

3.2. Contribution of the class C'/?

The contribution of the class €'/2 in the expansion of the probability density, equa-
tion (4), can be evaluated in a manner which is precisely analogous to that presented
in the previous subsection for the class C° The set of integrals {Iﬁ;’.(M,Lz)}
(m,m' ==%1/2,+3/2,...) will be defined in direct analogy to the {Igl,f,(M, Lz}}
(equation (7)). As was the case for the continuous class C?, it is found advantageous
to span C/2 with the %¥~1/2-1s) Under the assumption that within this class, the
eigenspectrum of {%?(~3/2-i9)) js discrete at its upper limit in the vicinity of s =i/2,
the integrals {I,ﬁ::,} can be performed by the saddle-point procedure (no poles are
encountered for these integrals). The result jis

17 (M, Lz) = expli(2m’u + 2m )] (—m XS (1/20(2E 7 (1/2)) - m)

. , 1
_qyimntlimlly, _—r
x (1)U Dm'] () T) e
(~InT ~ agijaLz)?
2bc:;sz

x exp |Ye1/2(1/2) Lz — (32)
The cssential observation is that ¥.,2(i/2), in contrast to the value 4(i/2) per-
taining to the C° class (which is zero), is a negative quantity. This implies that the
contribution of the class C*/2 decays exponentially relative to that of the class C?, so
that for Lz > 1 the contribution of C!/2 to the probability distribution p,_,; (M)
‘may be neglected. (This dominance can also be deduced if it is the case that the
spectrum of {%*(~1/2-1%)) is continuous at its upper limit, although the exponential
nature will in general be modified.)

3.3. Contribution of the discrete classes D*

It is easily deduced that the eigenspectra of the averaged representations belonging
to the discrete classes extend to values below unity. Since the {Df, .} for k =
3/2,2,5/2,... are normalizable with respect to the invariant measure, all but the
contribution of D! € D* in the expansion of the probability density can be ignored
for Lz > 1. However, it has been deduced that the latter contribution is precisely
cancelled by a component arising from the continuous class C0,
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3.4, The resulting distribution

The result of the previous three subsections is that the probability density p,_; (M)

o 0
is given simply by 3, JL9C" (M, L ). Insertion of the result (29) for the {I,(,??f, }
yields the following factorized form for the distribution

iz (M) dp(M) = p{T (TP (1)pi(v) AT dps dv (33)
with

DL = et exp [-(““;;:L”)z] (34a)

P (p) = 2% {1‘ + 2Re [21 Im EXP(Qim#)] } (34b)

(v = % {1 + 2Re mi;l g exp_.(Zim'u)] } : (34c)

The distributions pE}Lz(T), pfi”,fn)(#) and pf:g(v) are separately normalized with
respect to integration over the range of their arguments.

The transformation of variables from the phases p and v to the reflection and
transmission phases (¢, and ¢, ) is straightforward: the joint distribution of the latter

two variables is given by

Pi (2 80) = Bl (61— ./2) Plon (6/2) - (35)
The asymptotic distribution of the single variable ¢,, which in the present work is
given simply by [ p{é%*) (4., ¢ )dé, = p{)($,/2), has been studied earlier [15] by

an approach which ign be shown to be in exact correspondence with the evaluation
of (34c) with the argument ¢ /2.

It is apparent that the bulk of the weight of the probability density p,_ ; (M) is
given purely in terms of the eigenvalue of greatest modulus and the associated left and
right eigenvectors of the averaged representation {g2(~1/2-i9)} in the close vicinity

of s = i/2. With respect o the distributions appearing in the factorization (33)
of the distribution, pgi)Lz(T) is determined purely by the eigenvalue information,

pf-#g( ) is just the Fourier transform of the right eigenvector at s = i/2 and pfi’g(u)
is the Fourier inverse of the left eigenvector (after the relevant limiting procedure of
equation (30)). The non-trivial nature of these eigenvectors inherent in the description
of non-circular models implies that for such ensembles the phase distributions do not
become flat even in the limit of large L=z The intricate co-dependence of the matrix
elements of (%%~*/2-12)} on the form of the distribution p,(M) of the individual
scatterers and on s indicates that, in general, single parameter scaling of pg’{Bbz( T)
will not be obeyed.

Before applying the foregoing analysis to particular models, it is worthwhile re-
fining the treatment of p@L ,(T). In particular, as well as the mean and variance,
which are sufficient to describe the bulk of the distribution, all the higher-cumulants
of the distribution of —ln T can be determined from the properties of {(~1/2-is))
in the neighbourhood of s = i/2. These higher cumulants characterize the deviations
from the Gaussian form of the tails of the distribution.
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4. The cumulants of —InP

The statistical cumulants of — In T', which can be used to characterize the probability
distribution of that variable, can be determined from the behaviour of the moments
{T"} in the region of v close to zero. For a system consisting of Lz scatterers, one
has explicitly
1-L d-
¢ (- InT) = —— In{T¥ . 36
n ( ) d(_u)n < )Lz =0 ( )
The dependence of the moments as a function of - and Lz can be extracted by direct
expansion in terms of the irreducible representations; since these quantities have no

phase dependence, only %25"'/2") & C? appears in the expansion:

_] y(s)iﬂ 1/2— ls)d (37)

If one attempts to extract the functional form of a,, (s} by direct use of the orthogo-
nality relationship (A.7), it is found that the resulting integral is convergent only for
v > 1/2 [11]. The case of » < 1/2 can be handled by the introduction of discrete
components to the harmonic analysis. With the expansion

Z (P)‘-z”—P+/ b,(s)% 2("“1/2—‘5)(15 (38)

p=0

it is found that the integral determining the function b,(s) is rendered convergent if
the {a{P)} are chosen to be

co ? 2
as’p) — (-vcp)z/ [Z (Z(—l)k—u_pcj—kjck—”_jcp—k) ] . (39
§=0 \k=0

In equation (38), the upper limit of the summation is determined by
n = int[-r + 3/2] (40)

where the function int[z] yields the largest integer not greater than x.

For » equal to a negative integer, equations (38) and (39) correspond exactly with
a direct symmetry reduction of the direct product of —2v identical transfer matrices
(as presented in [11]). It may thus be regarded as an analytic continuation of this
symmetry reduction; at non-negative-integer values of v the matrices which describe
the evolution with length of T become infinite (these are just the representations),
and also there enters an integral over a continuous class of such matrices. For
v > 1/2 only this continuous class remains to describe the evolution.

For v in the region (v < 1/2), it can be deduced that, for long-lengths, the
discrete part corresponding to p = 0 in the expansion of (T%); . dominates over
the remaining contributions (this expansion is obtained by simply averaging (38)). In
the long-length limit, the latter components become irrelevant, and the evolution of
(T}, is given simply by

(T")p. = ?(51 _;3(( XY V00 v < 1/2. (41)
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Returning to the evaluation of the cumulants, substituting the explicit form (40)
for the moments into equation (36), and making use of the dominance of the
cigenvalue of greatest modulus for Lz » 1 yields (after the change of variables
v=1/2+is)

il = Lz + 8, (42)
where
o, = i"yY™)(i/2) 43)
and
i(d/ds) [{O1A(s)HAO(8)10)] [ozis2 ifn=1
B =4 (=1)*(n — 1)I{(n}(2 - 27) (44)

+im(d™/ds™) In [{(O] XD (sH{AD(5)|0}] |,2is2 if n > 2.

In the above equation, {(n) is the Riemann zeta function of argument n. From
the asymptotic length dependence of the cumulants, equation (42), the corresponding
distribution can be found following the method of [8]: this procedure yields precisely
the distribution {27) obtained previously (there is the notational correspondence o; —
a, o, — b

5. Application to the Anderson model

The foregoing analysis will now be applied to the case of the Andesson model for a
range of disorders and band-energies. The approach will be to calculate the function
¥(s) (in the neighbourhood of s = i/2) together with the Fourier coefficients {g%,}
and {g',} either by perturbation theory, or, for more gencral disorders, by numerical
truncation of the relevant (infinite) matrix.

The Hamiltonian for the Anderson model is of a tight-binding form, and is defined
in one-dimension by

H =) elitil+ ) Vil (45)
¢ {ii}

Here ¢; is the site-energy associated with the orbital |¢) centred at lattice-site 7, and
the V;, are the hopping elements which connect nearest-neighbour sites only. The
disorder in the model enters via randomness in the site-energies (diagonal disorder)
and/or in the hopping-integrals (off-diagonal disorder). Only the case of diagonal
disorder will be investigated here, with the site-energies within the disordered system
taken as statistically independent but equivalent variables, each being described by a
probability distribution p(e) which is chosen to be symmetric about the mean. The
hopping terms are taken as being equal to V' for all nearest-neighbour pairs. The
disordered system is taken as the region 1 £ ¢ € Lz, and is embedded between
two semi-infinite ordered leads with site energies all equal to the average site-energy
within the disordered region.

In the basis of the {|¢ >}, the Schrddinger equation for energy E can be written

in the form
¢n+1] —_ rs [ (bn }
[ o | = My b ¥n (46)
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where MY is a real-space transfer matrix determined purely by the properties of the
nth scatterer, and is given by

mg = [PV . (47)

A change of basis to the set of Bloch-waves of the ordered ensemble-averaged system
can be performed, yiclding a transfer matrix which relates incoming and outgoing
propagating waves in the way described in the introduction. It has the explicit form

M= [(1=ib)elr g, et ]

nT ib,eT (1408 )e (“48)
Here k is the wave-vector, which is related to the energy by the familiar tight-binding
dispersion relation

E—{e) =~2Vcosk _ (49)
and §,, is the statistical variable
8, = (e, —{e))/2sink. (50)

Comparing equations (47) and (1), one can identify the parameters r and { for
the nth scatterer as

Py = ~i8,[(1-16,) 1, =(1/(1~18,))e, (51)

5.1. Weak disorder

Using the Anderson model forms for the reflection and transmission coefficicnts
(equation (51)), the elements of the averaged representation {x2(~1/2~i2)} can be
calculated as an expansion in the moments (about the mean) of the site-energy
distribution ({(e — {€))?"}), or equivalently in the moments of the distribution p(§)
of the é,, (only even moments occur in the expansion since the distribution of the site-
energies is assumed symmetric about the mean). Perturbation theory in the disorder
can then be applied to the matrices to determine the eigenvalues and eigenvectors.
As found for the representation studied in [15] (referred to in that work as the
reflection transfer matrix), the nature of the perturbation theory necessary depends
on the value of k; if & is rationally related to = by

k=prfg (52)

non-degenerate perturbation theory can be applied up to 2mth order in the site-
energies where m is given by m = int{(g + 1)/2]. At higher-orders the degeneracy
amongst the unperturbed zero-disorder eigenvalues needs to be explicitly considered,
The strongest effect of this degeneracy thus occurs at the band centre,
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5.1.1. Generic band energy. At a position in the band where the use of ordinary non-
degenerate perturbation theory is permitted, the eigenvalue of greatest modulus and
the associated eigenvectors are easily calculated. Considering first the distribution
Pir.(—1nT) (which is related 1o pgi_‘,)Lz(T) by a simple change of variable), the
coeflicients «, and @, which, together with (42) determine the cumulants of —In T
for large Lz, are calculated to be

oy = o) — 2o 4 §(o{V))? 4+ O(c®) B, = 0(o'?)
oy = 2000 — $o1P + $(oD)? + O(o®) By = —x*{34 00} (53)
oy = 303 - 9(cM))? + O(o®) Bs = 12¢(3) + O(c?)
a, = 85 - 18(aD)2 4+ O(a®) 8, = —147* /15 + O(o(¥).
Here o(® is the 2nth moment of &
ol™) = (6°"). (54)

For the @, (n = 5) one must look to sixth order or hlgher for the leading contri-
bution. At second order, it is secn that the variance (the second cumulant) is equal
to twice the mean (the first cumulant) as Lz — oo, and that all other cumulants are
zero. This result was found in [8] by the use of a highly reducible representation,
and implies that the moments (T7,) for v < 1/2 (apart from a length-independent
prefactor) are given correctly by use of the log-normal form which describes the bulk
of the distribution.

Figure 1 shows a comparison of the analytical forms for the first three cumulants
with a numerical simulation. The k-value was chosen as cos™1 0.373, and the site-
energy distribution was taken as flat with variance 0.05 V2,

The relevant eigenvectors are also easily calculated by perturbation theory, and
yield for the joint phase-distribution

sin(k + 26, — ¢,)

Pl(lﬁ:,m)(‘\i’r, &) = (2 )2 {] + o) [

sin k
+sm(2ks-{i-n42¢’: - 2¢r)] + 0(0(2))}
) _sin(—k + ¢.) , sin(—2k+2¢,) (2)
x{1+a [ s + YA + O0(a' ) . (59)

The limiting distribution of the transmission phase p{®*)(#,) = [ p{®"?)(&,, ¢,) d¢,
is found from (55) to be given by

A0 =5 {14 (V) [SR) - Sa 0o 69

Hence to lowest order in the disorder (o)), p{o*(,) is fiat over its range.

5.2. Band-centre anomaly

At the band-centre, the unperturbed eigenvalues (pertaining to the ordered system)
take only the values £1. At lowest order in the disorder, it is possible to work within
the subspace of the (infinitcly degenerate) unperturbed eigenvalue at unity. This
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yields a tri-diagonal form for the averaged representations. Numerical truncation
and calculation of the relevant eigenvalue and eigenvectors allows for the probability
distributions to be determined: the truncation size is increased until convergence is
achieved.

The «, which determine the asymptotic length-dependence of the cumulants (via
equation (42)) are calculated to be

o, = 0.91389320) oy =1.914053 301 oy = 0.51905401)
a, = 1.0493a() oy = 0.0200(1). (57)

In contrast to the situation at a generic band-energy, the «, for n = 3 now are of
order o{%); the third and higher cumulants thus show a marked anomaly at the band
cenire at weak disorder. This behaviour implies that the moments (T} (v < 1/2)
will not be calculated correctly by use of the log-normal form which describes the
bulk of the weight of the probability distribution in the long-length limit. It is also
seen from (57) that the relationship between the mean and variance which exists at
a generic band-energy (o, = 2¢,) is modified at the band-centre. This implies a
breakdown of the single-parameter scaling of the distribution of T even in the limit
of weak disorder for the Anderson model,

The band-centre ancmaly in the first cumulant (or equivalently the localization
length) has been observed in references [20-22],

1]
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Figure 1. Numerical simulation showing the evolu- Figure 2. Numerical simulation showing the evolu-
tion of the first three cumulants of —In T with  tion of the first three cumulants of —In T with
length, for an Anderson tight-binding Hamilto-  Jength, for an Anderson tight-binding Hamilto-

nian with a flat site-energy distribution of variance  nian with a flat site-energy distribution of variance
0.05 V2. The k-value was chosen as cos™! 0.375.  0.05 V2 at the band-centre. The theoretical asymp-
The theoretical asymptotic behaviour of the cumu-  totic behaviour of the cumulants is included.

lants is included.

Figure 2 shows band-centre data for the first three cumulants obtained from a
numerical simulation, together with the analytical results. The site-energy distribution
was again taken as flat with a variance of 0.05 V2,
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The Fourier-components of the distributions of x and v are found from the
eigenvector information to be

g5 = g}) = 1.0000 g5 = _4_:]]2 = —8.6107 x 10™2
) (38)

g5 = g} =1.1094 x 1072 gr=g5=—-1.5872x1072....

Note that these values are at zero-order in the disorder. The resulting joint distribution
of ¢, and ¢, is shown in figure 3, and is indistinguishable from the results of a
numerical simulation for very small disorders. The reflection-phase distribution at
the band-centre has been displayed earlier in [15].

Figure 3. Asymptotic joint distribution of the re-
flection and transmission phases for the Anderson
model at the band-centre and at weak disorder.
The plot -was obtained by truncation of the repre-
scutations.

5.3. Intermediate disorder

Higher disorders can be dealt with by numerically integrating the elements of
x2(=1/2-is} (which is of course truncated to finite size) weighted by the required
probability distribution. The relevant eigenvalue and eigenvectors can then be found
numerically, and the truncation size increased until convergence is evident. The range
of disorders for which a converged probability distribution can be found by such a
method depends on the shape of the site-energy distribution and on the energy: as
an example, for a flat site-energy distribution, convergence over most of the band is
easily achieved up to a site-energy variance of about 5 V2, With regard to the phase
distributions, it is clearly not possible to calculate the Fourier coefficients ({gF, } and
{g}. 1) for arbitrarily large m, implying a lack of knowledge of the high-frequency
components of the distributions. In the case of ensembles with continuous disorder
distributions, this causes no hindrance since the phase distributions for such mod-
els are sufficiently smooth and slowly varying. For discrete distributions, however,
the singularities [16] which can occur in the phase distributions will of course not
be reproduced, but the approach is sufficiently convergent and numerically stable
to produce good overall resolution. Despite the non-negligible contributions of the
high-index eigenvector components with respect to the phase-distributions possible
in discrete ensembles, it appears that the distribution pgr‘:,)Lz(T) stemming from the
eigenvalue information displays good convergence as a function of truncation size.
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cumulant

Figure 4. Numerical simulation showing the evo-
lution of the first three cumulants of —1n T with
length, for the Anderson model with a flat site-
energy distribution of variance 1.0 V2. The k-value
N R R T R T R TR TR was chosen as /3. The theoretical asymptotic be-
haviour of the cumulants is included.

Figure 4 shows the length behaviour obtained from a simulation of the first three
cumulants at k = w/3, for a flat distribution of site energies of variance 1.0 V2. The
theoretical asymptotic predictions are included.

The theoretical asymptotic joint reflection and transmission phase distribution
for a flat distribution of site energies of variance 1.0 V2 at k = cos~10.375 is
shown in figure 5; this distribution is confirmed by numerical experiment. Figure
6 shows the reflection and transmission phase distributions for the binary-symmetric
site-energy distribution p(e) = 1/26(e — ¢, — 1.0) + 1/26(e — ¢, + 1.0) at k& =
0.457. Convergence of the first 100 Fourier coefficients was achieved for these
distributions. The results agree with numerical simulation at the resolution implied
by this truncation ([17] contains a numerical simulation of the reflection distribution
for the same ensemble, and provides a discussion of some of the singularities that
occur).

Figure 5. Asymptotic joint distribution of the re-
flection and transmission phases for the Anderson
model with a flat site-energy distribution of vari-
ance 1.0 V2 at k = cos™10.375. The plot was
obtained by truncation of the representations.
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Figure 6. Asymptotic distributions of (2) the reflection phase and (#) the iransmission
phase for the Anderson model with the binary-symmetric site-energy distribution p(€) =
1/26(e—co—1.0)+1/28(c ~ €0+ 1.0) at k& = 0.45«. The curves were obtained by
truncation of the representations.

6. The resonance tail of the distribution

The form of the probability distribution p;_;,(M) with T such that —InT <« Lz
can also be evaluated by use of (3) for general p,(M) by a simple generalization of
the method used by Melo [7] for the special case of p, (M) isotropic over the phase
variables. It is found that the contributions of the classes C'/2, D* decay with Lz
relative to the contribution of C°. With the assumption of the presence of a discrete
eigenvalue at the top of the spectrum of (% ~1/2=1*}} for s close to zero, the set
of integrals {IS: } (which are defined as in equation (7)) can be calculated by the

ml‘

saddle-point method following [7] to yield

IS, (M, L2) = exp [9(0)Lz] [/ — ¢"(0)]*/*
x (=m|AO(0))(NO(0)] - mY 2P (M), (59)

Xmm’

The contribution of the remainder of the eigenvalues of (5(35;1/ 2y can be neglected.
The resulting probability density is thus given simply as the sum of the right-hand side
of equation (59) over m and m'. The shape of this tail of the distribution is seen to
be independent of length; only its overall scale is set by Lz (together with the range
of T for which (59) is valid). The eigenvalue and associated eigenvectors appearing
in (59) can be calculated by perturbation theory or by numerical truncation. The
latter procedure was carried out for the case of the Anderson model; the spectrum
was confirmed as being discrete at its upper limit in modulus and the extraction of
the eigenvalue of greatest modulus and the associated eigenvectors was found to be
convergent and numerically stable over a wide range of disorders and energies (see
also [11]).
The distribution of the single variable T within the tail is given simply by

r 1
P52 (T) = I (T, L2) 5
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372

= exp[t[J(O)Lz] [W]
x (O AN () |0y T3, Fy (3,5, 1,1 =TT (60)

The moments (T} (v > 1/2) are dominated by the contribution of this tail of the
distribution. Indeed the integrals [ pi® ; T% dT can be found in the standard tables
(e.g. [23]), and are found to be in exact agreement with the (T%} (v > 1/2) obtained
in [11] by direct spectral analysis of these quantities.

7. Conclusion

The problem of evaluating the joint probability distribution p, _; .(T, ¢,, ¢, ) of trans-
mission intensity, refiection phase and transmission phase of a disordered 1D wire
composed of Lz elastic scatterers, given the distribution p, (T, ¢.,¢,) of the con-
stituent scatterers, can be addressed by direct expansion in terms of the irreducible
representations of SU(1,1) (the group topologically formed by the (k-space) transfer
matrices} without recourse to the assumption of p, (7T, ¢, ¢, ) isotropic over its phase
variables or to the limit of weak disorder. The method was applied to the case of the
Anderson model over a range of disorders and band-energies. As well as the bulk
of the distribution, the resonance 1ail can also be determined for a wide range of
ensembles.
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Appendix 1. The irreducible representations of SU(1,1)

This appendix provides a bricf discussion of the unitary irreducible representations
of 8U(1,1) as categorized originally by Bargmann [17], and introduced in connection
with transport in disordered 1D systems by Kirkman and Pendry [11], and Mello [7].

The index of a representation will be denoted &, and the row by m. The repre-
sentations which form a complete set are listed below.

(i} continuous class:
(1) integral case (C2), m =0, £1, £2, ...
k=1/2+1s 0gs<x
(2) hali-integral case (C}/%), m = +1/2, £3/2,
k=1/2+41is 0<s<oo
(i) discrete class:
(1} maximal m( D} )
k=1,3/2,2, ... m=-k,—(k+1), ...
(2) minimal m(D})
k=1,3/2,2, ... m=rk,k+1, ...
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For the display of the explicit forms of the representations, it is convenient to
define the variables p and » which are related to the reflection and transmission
phases, ¢, and ¢, respectively, by

exp [i(p + v)] = exp [i}] exp [i{s — v)] = exp [i(¢, — &,)] (A1)
and to define T by
T=h(2=1—|r? (A.2)

where r and t are respectively the reflection and transmission amplitudes. The group
is spanned by the parameter ranges 0 < T € 1, —7 < g, v < 7 In terms of these
variables, Bargmann’s unitary itreducible representations take the form

DY (4, T,v) = e~ Bmaghk  (T)e~2im'v (A.3)
withe
dfnm‘ (T) = emm’(k)(l - T)lm-mfllsz

x o F [k + max(m,m'),k — min(m,m’),|m - m’| + 1;1 - T].

(Ad)

In this equation, ,F) is the hypergeometric function of Gauss, and ©,,,,,. is defined
by

O k) = 1 (AS5)
Im—m|
1 N + . . -I - 2
O (B)= oy T (01 =) min(om, ) llmin(om, m) 45113
1 m > m’
* {(Hl)’“'“m m < m'. (8-9)

It can be shown that there exists orthogonality relations amongst the representa-
tion elements. This is expressed by

[ DE i (W)DE (M) du(w)
wilé, .6 if k, k' e D= -~
k YER )
fTk=3i4is,k=314iseC?
= L a5 = Do by, G =T
LHEE N ork:—é—-i—is,.’c’:%-}-1.‘3"601"2

0 if k, ¥ € different classes

t [
™™y

(A7)
where k. = 1/2 4 is and ¥ = 1/2 + is’. The invariant measure du{M) is given by

dp(M) = (27)"*du dvdT/T? (A.8)
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and the weights w, and w(s) by

w, =2k -1 ke D* B>1/2
w(s) = 2stanh 7s ke O k=1/2+is (A.9)
w(s) = 2scoth xs ke CH? k=1/2+1}s.

In [11], irreducible representations were derived by decomposing the direct prod-
uct of n identical transfer matrices according to the permutation group of order n.
Within a subspace, a procedure for the analytical continuation to non-paositive-integer
n was developed. The representations thus constructed are denoted in [11] by £2V.
The representation % ~*) can be related to D* as defined in (A.3) by a simple
similarity transformation; this transformation merely induces the changes

T(1-k+m)/TQ-k+m) im>m

Mmooy G (k) { P(1—b-m)/T(1—-k-m)  ifm<m 0

Due to the need for analytic continuation, it is found more convenient to spar the
continuous representation classes C° and C'/2 with the -1/2-i),
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